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INTRODUCTION

In this paper we shall consider certain questions regarding the uniqueness
of best approximations and the continuity properties of the best approx
imation operator for nonlinear approximation in L p spaces with I < p < 2.
In particular we shall study the following two questions:

(l) Given LiJ1, [a, b]) with f.l a complete regular Borel measure on
[a, b] and I < p < 2 and given an approximating set Me [p, what is the
topological "size" of the set of elements in L p having unique best approx
imations in M?

(2) Given fo E L p and M as in (I), does the best approximation
operator P satisfy a Lipschitz condition on some neighborhood of fo? That
is, is there some k> 0 and some c5 > 0 (depending only on fo) such that
Ilf- foil < c5 implies that IIP(f) - P(fo)ll:::;; K Ilf- foil? (If this is the case, we
would say that the approximation problem is stable provided that K is not
too large.)

For 2:::;; p < 00 these questions were answered in [I] and [2], respectively,
for a large class of approximating families that includes generalized rational
functions and the so called T-families [3]. Some results on uniqueness and
characterization for the case p = I may be found in [4] and [5]. The
techniques used in [I] and [2] relied on the continuity of the second
(Frechet) derivative of the error functional with respect to the parameters. As
will be seen, for I < p < 2 these second derivatives need not exist much less
be continuous.
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NONLINEAR L p APPROXIMATION 13

Using a smoothing technique described later, we shall show, for example,
that the set of elements having unique best approximations from the set R;:'
of ordinary rational functions contains an open and dense subset of L p for
each 1 <p < 2. This extends the corresponding result in [11 to those values
of p. In contrast to the results of [21, for 1 <p < 2, we show that even for
finite dimensional linear approximation, no local Lipschitz conditions holds
(at least when Lebesgue measure is used). We shall show that under certain
conditions an inequality of the form IIP(f) - P(fo)llp ~ K Ilf- folloo obtains.

Approximation Problem

The approximation problem we shall consider is as follows: Let A denote
a continuous map from an open subset S of R N to the normed linear space
H. Given fE H we seek an X oE S such that IIA(xo) - fll = infxEs IIA(x) - fll,
where II . II is the norm on H.

In the cases we consider, H will be LiJi, [a, bJ), where p is a complete
regular Borel measure on [a, bland 1 <p < 00 and usually p < 2. Moreover,
we will assume that the map x --+ A " (x, .,.) exists and is continuous on S,
where A "(x, " .) denotes the second Frechet derivative of A with respect to
x. We will usually shorten Lp(u[a, bJ) to L p.

I. CHARACTERIZATION AND UNIQUENESS OF BEST ApPROXIMATIONS

For fE L p fixed, let F(x) = J~ IA(x)(t) - f(t)I Pdp p> 1. Then finding a
best approximation to f from A(S) = {A(x) Ix E Sf is equivalent to finding
an xES that minimizes F. The chain rule and Lebesgue's dominated
convergence theorem easily yield the following formula for the derivative of
F in the direction h:

.b

F'(x. h) = pi IA(x)(t) - f(t)I P -
1 sgn(A(x)(t) - f(t)) A '(x. h)(t) dp

'a

for all hE RI\:. (1)

At a local minimum of F we, of course, have F' (x, h) = 0 for all hER ".
This immediately yields the following basic lemma.

LEMMA 1. Suppose A(x) E A(S) is a local best approximation to fE L p ,

where p > 1. Then

bI IA(x)(t) - f(t)!P-l sgn(A(x)(t) - f(t))A'(x, h)(t) dp = 0
. a

for all hER'.
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If P ~ 2 one would also have the necessary condition that F"(x. h. h) ~ 0
for all hE R.'Ii if x is a local minimum of F. However, for 1 <p < 2,
proceeding formally and differentiating (1) under the integral sign we arrive
at the expression

.b (A'(x, h)(t))2
p(p-l).I

a
IE(x.tW-P df./

.b

+p I IE(x,t)IP-1 sgn(E(x,t))A"(x.h.h)(t)df./.
. a

(2 )

where E(x, t) = A (x)(t) - f(t).
At a local best approximation E(x. t) will have sign changes in [a, b] so

that the first of the integrals in (2) may be infinite. (The second one,
however, is always finite.) This indicates that F"(x, h, h) may fail to exist.
We should note here that the formal differentiation process does not yield (2)
if p = 1 and for this reason the techniques of this paper will not apply to that
case. The problem of computing F"(x, h. h) for p = 1 is discussed in [41.

Our first task is to prove that F"(x, h, h) exists and is equal to (2) if (2) is
finite. This proves to be suprisingly delicate and we require several
preparatory lemmas. In addition we shall adopt the following convention.

Convention. Given fE L p ' 1 < p < 2, xES, hER". the function
(A '(x, h)(t))2/IE(x, tW-P shall be given the value zero whenever
A '(x, h)(t) = 0 even if E(x. t) = 0 at the same t.

LEMMA 2. Let 1gl f, A E R, A* 0 be a family of f./ measurable functions
on [a, bI that are finite valued f./. a.e. and converge to a f./.a.e. finite function
g with g(t)~O on [a,b] as ,1.-->0. Let Gt=ltlg.t(t)<O} and Go =
lt I g(t) = Of· Then iff./(Go) = a we have lim t ....of./(G(,1.)) ~ a.

Proof See [6, p. 21].

LEMMA 3. For all a, b, and £5 real with b * 0 and 0 < £5 < I the ine
quality

is valid.

Proof See [6, p. 22].

LEMMA 4. For all a and band 0 < b < 1 the inequality Iial b -Ibl b I~
la - bib holds.

Proof Elementary. I
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LEMMA 5. If jeP,,} is a sequence in L p converging to rp E L p I <P < 2
then Irp,.IP-I---+lrpIP-1 in L q , whereq=pI(p-I).

Proof Using Lemma 4 we have

( II rp,.IP- 1 -I rp IP-I Iqd,u ~ s: (I rp,. - rp IP-I)q d.u = ( 1rp,. - rp IPd,u

-> 0 as l' ---+ 00. I

THEOREM 1. Let fE L/p, [a, b j), I <p < 2, where ,u is a complete
regular Borel measure. Let xES and h ERN be fixed. Then the functional
F(x) = J~ IA(x)(t) - f(t)IP d,u is twice (Gateaux) differentiable in the
direction h provided that J: A '(x, h)(t)2/IE(x, t)1 2-P d.u < 00, where E(x, t) =
A(x)(t) - f(t) and where the integrand is defined by our convention at all
points where the numerator vanishes. Infact

" .b (A' (x, Yz )(t»2
F(x,h,h)=p(p-l)j I ( W- p d,u

'Q Ex, t

.b

+pi IE(x, t)IP-1 A "(x, h, h)(t) sgn(E(x, t» d,u.
• a

Proof Let xES and h '* 0 in RN be fixed. Since x is fixed for the proof,
we will use E(t) instead of E(x, t) to denote A(x)(t) - f(t). Similarly, for
each A, E;..(t) will denote A(x +Ah)(t) - f(t). Now, (lip) F'(x, h) = J~

IE(t)IP-l sgn(E(t» A '(x, h)(t) d,u. By definition, F"(x, h, h) = lim.l_o«F'(x +
Ah, h) - F' (x, h»1A) and F' (x + Ah, h) - F' (x, h) can be written
(llp)[ (F' (x +Ah, h) - F' (x, h) 1= II (A) + Iz(A) + I 3(A), where

.b

I I(A) = I IE.t(t)IP-1 (A '(x + Ah, h)(t) - A' (x, h)(t» sgn(E.t(t» d,u,
'Q

.b

12(A) = I (IE.l(t)IP-1 -IE(t)IP-I) A '(x, h)(t) sgn(E.t(t» d,u,
. a

and
.b

13(h) = I IE(t)IP -I A' (x, h)(t)(sgn(E,t(t» - sgn(E(t))) d,u.
. a

We shall consider these three integrals separately.

CLAIM 1.

.b

lim (II (A)IA) = I IE(t)IP-1 sgn(E(t»A"(x,h,h)(t)d,u.
~t_o ~ a

640;34/1-2
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Proof of Claim 1. Let hA(t) = sgn EA(t), ho(t) = sgn(E(t», 'II.t(t) =
(A '(x + Ah)(t) - A '(x, h)(t»IA, and 'IIo(t) = A "(x, h, h)(t). Note that EA(t) =
E(t) + .1.t(t), where .1.t (t) = A (x + Ah)(t) - A (x)(t) = A(A' (x, h)(t) + 0(..1. )(t».
where 110(..1.)llp/l AI~ M for all °<IAI~ ..1.0 , where M is independent of A.
From this it follows that h t (t) = ho(t) except perhaps on the set C(A) =
jt IIE(t)1 ~ 1.1.t (t)j}. Now

I.e [IE.t(t)IP-1 h.t(t) 'II.t(t)-IE(t)!P-1 ho(t) 'IIo(t)] dtJ I
.b

~, Wt(t)IP-1 Ih.t(t)II'II~t(t) -'IIo(t)1 dtJ
·u

.b

+ I l'IIo(t)II IE.t(t)IP- 1 hA(t) -IE(t)IP-1 ho(t)1 dtJ
. u

.b

~ I IE.t(t)IP-1 1'II~t(t) - 'IIo(t)1 dtJ
. u

.b

+ j l'IIo(t)11 h.t (t)111 E.t(t)IP- ( -IE(t)IP-I IdtJ
. u

.b

+ I l'IIo(t)IIE(t)IP-llhA(t)-ho(t)Id,u
·u

We have the following, using HOlder's inequality, where q = pip - 1:

J( (A) ~ II E.t II~/Q 1I'11.t - '110 lip,
J2(A)~1I1f10IlpIIIE.tIP-' -IE/P-1Ilq ,

.b

J 3(A) ~ 21 l'IIo(t)IIE(t)IP-1 dtJ
. u

~ 211'110 lip I IE(t)IP dtJ l/q ~ 211'110 lip 11.1AII~/Q·
'CLt)

Then Lemma 5 and the existence of A "(x, , ) imply that Ji(A) -+ 0, i = 1,2,3,
and claim 1 is proved.

CLAIM 2.

1. I2(A) ( 1),·b A '(X,h)(I»2
d1m -= p- tJ

A~O A . u IE(t)1 2
-

P

if the integral iffinite.
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Proof of Claim 2. Assume the integral is finite. Define gA(t) by g.l(t) =
[lEA(tW- 1-IE(ty-l) sgn(EA(t» A'(x, h)(t). (1/,.1.). As in the pr.oof of
claim 1, let JA(t) =A(x +Ah)(t) -A (x)(t) = A(A '(x1h)(t) +O(A)(t» so that
EA(t)=E(t)+J).(t). Let S(A) = {tIIA'(x,h)(t)I:S;;;210(A)(t)l}, B+(A)=
{t Ig).(t) > O} and B-(A) = {t 1gA(t):S;;; Of.

We first note that B-(A):::l{tlgo(t)=O}=Bo' where go(t)=(p-l)
«A'(x,h)(t))2/IE(t)12-P) so that p(B-(A»~p(Bo) for all A. On the other
hand, g.t (t) --> go(t) a.e. and go(t) is finite valued a.e. since the integral is finite
and so by Lemma 2, lim,t ....op(B-(A)) :s;;;p(Bo). Thus, lim.t ....op(B-(A» =
p(Bo) and hence pjt I g,t(t):S;;; 0 and go(t) ~ O} --> 0 as ,.1.-->0. We now write

where

.0+(,.1.) = B+ (A) n SC(A) and .0-(,.1.) =B-(A)n SC(A).

I
I
' gA(t) dp I:s;;; j' IIEA(tW- 1-IE(t)IP-I IIA'(X, h)(t)1 dp

. sw . sw IAI

:s;;; 2)' IIE,l(t)IP- 1-IE(t)IP-l IIO(A)(t)1 dp
S(A) 1,.1.1

:s;;; 211I E AIP-' -IEIP-11Iq 11~~?lp

:s;;; 2MIIIE.t IP-I -IEIP-1Ilq

and by Lemma 5 this tends to zero as ,.1.-+0. To consider the other two
integrals, first write g,l(t) in the form

g).(t) IE(t) + J).(~~(~; -IE(t)IP-I J~(t) sgn(E(t)+J).(t»A '(x, h)(t).

On the set .0 -(A), sgn J).(t) = sgn(A) sgn(A '(x, h)(t» by definition of S(A).
Thus,

f IIE(t)+JA(t)IP-I-IE(t)IP-11 IJA(t)IIA'( h)()ld
Q_().) IJ).(t)1 1,.1.1 x, t p

= r IIE(t) +JA(t)IP-I -IE(t)IP-11 1A ,( h)(t) +O(A)(t)1
-Q-W IJA(t)1 x,

X IA'(x, h)(t)1 dp
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where (iE(t) + Ll.t(t)IP-1 -IE(t)IP~I)/Ll.t(t) is defined to be

sgn E(t)
(p - 1) IE(tW P

But

and since p(B - (A) n B~) --+ 0 as observed above, then this integral converges
to zero also. Also, since IA'(x, h)(t)/A'(x, h)(t) +O(A)(t)1 ~ 2 on n-(A) we
have using Holder's inequality

j
ob p-l p_IIO(A)(t)1 IA'(x,h)(t)1

'a IIEA(t)1 -IE(t)j I 1,11 IA'(x, h)(t) +O(A)(t)1 dp

~ 211 Wtlp- 1 -IEIP-11Iq 11~~~)llp --+ 0 as ,1--+0 by Lemma 5.

Finally,

r g.t(t) dp
. (Pet)

IIEt(t)!P-J -IE(t)IP-'1- r IA '(x, h)(t)1 dp (since g,t ~ 0 on n + (A»
- ,0 +(.1) IAI

IIE.t(t)IP-1 -IE(t)IP-11 ILl (t)1
I' IA'(x. h)(t)1 I'~I dp

=. O+(.t) ILl,t(t)/
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Since ILlA(t)1 = 1..1. IIA' (x, h)(t) + 0(..1. )(t)1 and since lA'(x, h)(t)1 > 210(..1. )(t)1
on n+(..1.), we have

10(..1.)(t)//A '(x, h)(t)/ 2 /O(..1.)(t)/
ILl.t(t)1 ~ 1..1.1 .

Hence,

J2(A) ~ 2 ( IIEAIP -
1 -IEIP-IIIOi~~(t)1 d,u

~ 2111E,t IP-I -IEIP-11Iq • II ~~~)llp -> 0 as A~ O.

Finally, we need to show that

lim J (..1.)= (p-l) Job (A'(x,h)(t»2 d
ol-->O J .u IE(t)12-P f.1.

Consider

By Lemma 3 and Lebesgue's dominated convergence theorem this converges
to (p - 1) J~ (A'(x, h? (t)/IE(tW-P) df.1. But

b II E (t)IP- 1 IE(t)IP - I Ir .t - (A'(x,h)(t»2df.1
·u ILl.t(t)1

J( l)+f IIEA(t)IP-I-IE(t)IP-11 (A'( h){t»2d
= ,11. O+(A)< ILl.t(t)1 x, 'f.J

= J,(..1.) + 1(..1.).
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f(A):s;::f (A'(x,h)(t)i d:s;::f (A'(x,h)(tW lip
"" jJ+(A)C IE(t)1 2 P J.t "" SIAl IE(t)1 2 P

1

0 (A'(x,h)(t))2 d
+ I ()1 2 P J.t.-8-(.0 E t

and

(as above)

I (A'(x,h)(t))2 d ---+0
o SUI IE(t)1 2

-P J.t
as A---+ 0

since it follows easily that the characteristic function X.t ( ) of S(A) is such
that XA ---+ Xo a.e., where Xo is the characteristic function of Bo and the
integrand (by definition of Bo) vanishes on this set. This finishes the proof of
claim 2.

CLAIM 3. limA~o 13(A)/A = O. Let e.t(t) = IE(t)IP- L A '(x, t)(t)(sgn Et(t)
sgn(E(t)). Then e.t(t) = 0 except, perhaps, if IE(t) ~ IA.t(t)I. Let T(A) =
{tIO<IE(t)I~IA.t(t)l} and let C1(A)=T(A)nS(A) and C2(A)=
T(A) n SC(A), where S(A) is defined as in claim 2. Then

II3(A)1 ~ r leol(t)1 dp = r
A -n.u IAI -cLw

+ I le.t(t)1 dp.
-c,W IAI

But

, leA(t)1 dp
-C,(.l) IAI

= ,0 IE(t)IP-I lA' (x, h)(t)1 dp
-C,(A) Ixl

~ 2 r IE(t)IP-l IO(A)(t)1 dp
·CLW IAI
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as L1-4 O.

Also

le.\(t)1
IAI d/l

IE(t)IP-l
IAI IA'(x, h)(t)1 d/l

+ 2 r IE(t)IP -1 IO(A )(t)IIA ' (x, h)(t)1 d/l
,c,W 1L1.\(t)1

::;;; 2 j IE(t)IP-l (A'(x h)(t))2 d/l
'TW IE(t)1 '

+ 2 r IE(t)IP-1 IO(A)(t)1 IA'(x, h)(t)1 d/l
'c,W IAI IA'(x, h)(t) +O(A)(t)1

::;;; 21' (AI'i~' )~;~t:)2 d/l + 4" 1L1,l(t)IP-1 IO(A)(t)1 d/l
'TW t -c,w IAI

The inequality

I, 1L1 (t)IP-l IO(A)(t)1 d &: 11L1 IIP/q IIO(A)II
,1 1AI /l "" .t P IAI,C,(.\)

21

shows that J2(A) -40 as A-4 O. Let X.\ denote the characteristic function T(A).
Let tE [a,b) be such that X.\(t)f> 0 as A-40. Then there exists a sequence
lA" f -4 0 such that X.\ (t) = 1 for all v. But then t E T(A v ) and so 0 < IE(t)1 ::;;;
1L1.t ,,(t)1 for all v. But IL1.\,.(t)l-4 0 /l.a.e. (since it converges to zero in L p ) and
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so jt IX~t(t).,... 0 f is a set of measure zero. Thus X.t ---+ 0 IJ-.a.e. and hence
J, (A) ---+ 0 as ..1.---+0. This proves claim 3 and completes the proof of
Theorem I. I

COROLLARY 1. Let fE L p and suppose xES is such that A(x) is a local
best approximation to f from A (S). Then for each hER" we have

.b

(1) p J IE(t)IP-1 sgn(E(t»A'(x, h)(t)dlJ- = 0,
a

(2) (- 1) J.b [A '(x, h)(tW d
p p a IE(tW p 'f.l

.b

+ p' IE(t)IP- 1 sgn(E(t»A"(x, h, h)(t) dlJ- ~ O.
. a

Proof Of course (I) is just Lemma I. To show that (2) holds, we first
note that if J~([A'(x,h)(tW/IE(t)12-P)d,u=00 then (2)=00~0. If
J~ ([A'(x, h)(tW/IE(tW-P) dlJ- < 00, then by Theorem I, F"(x, h, h) exists
and equals the left hand side of (2) where as before F(x) = IIA(x) - fll~. The
function 11>(..1.) = F(x + Ah) has a local minimum at A= 0 and is twice
differentiable a A = 0 and hence F"(x, h, h) = 11>"(0) ~ O. I

For convenience of notation we shall denote the quantity in (2) by
F"(x, h, h) even when its value is 00.

Smoothing Technique

Since it is possible that

.b [A '(x, h)(tWt IE(tW P dlJ- = +00

we cannot depend on the continuity or even the existence of F"(x•. , .). To
overcome this difficulty we now introduce a perturbation in our problem for
which we obtain a continuous second derivative. The following lemma
defines this perturbation and establishes formulas for the necessary
derivatives. The proof is a simple application of Lebesgues dominated
convergence theorem and we therefore omit it.

LEMMA 6. For fE L p , 1 < p < 2, define Fe(f, x) by FAf, x) =
J~ (E 2(x, t) + e2)p/2 dlJ-, where E(x. t) = A(x)(t) - f(t) and e ~ O. Then

.b

(i) lim FeCf, x) = F(f, x) = I IE(x. t)IP d'f.l,
e_O ~ a
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(ii) '(f, h) fb E(x, t)A'(x, h)(t) Au hERN
Fe ,X, = P a (E2(x, t) + e2)(2-P)(2 Uf',

(iii) lim F;(f, x, h) = F' (I, x, h)
e~O

.b

= pi IE(x, t)IP-1 A '(x, h)(t) sgn(E(x, t)) df.L,
• Q

(iv) F;(f, x, h, h) = ll(e) + lz(e) + 13(e), where

r" [A '(x, h)(tW
ll(e) = pep - 1) J

a
(E2(x, t) +e2)(2-Pl/2 df.L,

J
b E(x, t)A"(x, h,h)(t)

12(e) = p a (EZ(x, t) + e2)(Z -pl/2 df.L,

and

THEOREM 2. Let the perturbation function Fe(f, x) be as in Lemma 4.
Then

lim F;(f, x, h, h)
e~O

= ( _ 1) j.b (A'(x, h)(tW d
P P 'Q IE(x, tW-P f.L

.b

+P J IE(x, t)IP- LA " (x, h, h)(t) sgn E(x, t) df.L
. a

'f I· b [A'(x,h)(tW d
t 'Q IE(x, tW-P f.L < 00.

Otherwise lime~o F;(f, x, h, h) = +00.

Proof Since x and f are fixed in the proof we shall shorten FeCI, x),
F;(f, x, h), F;(f, x, h, h) and E(x, t) to Fe(x), F;(x, h), F;'(x, h, h) and E(t),
respectively. Let II (e), lzCe), and 13(e) be defined as in Lemma 4.

CLAIM 1.

. .b (A '(x, h)(t»z
hmll(e)=p(p-l)/ I (W P df.L.
e~O . Q E t

Proof Since (E2(t) +e2)(P-2l/Z ~ (EZ(t) +e2)(P-2)/2 if e< e the result
follows immediately from the monotone convergence theorem.
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CLAIM 2.

Proof
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.b

limI2(e)=p I IE(t)\P-' A"(x,h,h)(t)sgn(E(t»dp.
e -+0 ~ a

I(E2(t) + e2)(P-2)/2 E(t) A II(x, h, h)(t) I

~ /(E 2(t»<»-2)/2 E(t)AII(X,h,h)(t) I=IE(t)IP-1IA"(x,h,h)(t)\

which has a finite integral. Since

lim (E 2(t) + e2)(P-2)/2E(t)A"(x, h, h)(t)
e~O

= IE(t )1" -1 A "(x, h, h)(t) sgn(E(t))

the Lebesgue dominated convergence theorem applies and the claim IS

proved.

.b (A '(x, h)(t»2
.I

a
IE(t)1 2- P dp < 00.

Proof Let S(e) = It IE 2(t) > e} and let T(e) denote the complement of
S(e). Also, let ge(t) = e2(A' (x, h)(t))2(E2(t) +e2)(P -4)/2. Then

13(e) = p(2 - p) lr git) dp + f git) dfJ J
. 5(el . l(e)

and noting that git) may be written in the form

we consider two cases:

(i) On S(e) we have

& (A'(x,h)(t»2 e2 e(A'(x,h)(t»2
git) "'" (E2(t) + e2)(2 p)/2 e + e2~ (E 2(t) + e2){2 p)/2'
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But then

as e -> 0 since the integral

j./J (A' (x, h)(t»2 d
'a IE(t)1 2 -P f.J < 00.

(ii) Let T(e) = {t E T(e) IA '(x, h)(t) * 01. Then

But .u(T(e» -> 0 since .u{t IE(t) = 0 and A'(x, h)(t) * 01 = 0 and hence

lim f git) d.u = o.
e~O. T(e)
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Thus claim 3 is proved. Finally, since lime~o Iz(e) < 00 and () ~ 0 in any
case, if

.b (A '(x, h)(t»2t \E(t)\Z-P d.u= 00,

then lime~o F;'(x, h, h) = 00. I

We now need to show that under appropriate hypotheses for each e > 0
and IE L p there exists at least one x(e) E S such that FeU, x(e» =
infxEs Fe(f, x). We also need to consider what happens to x(e) as e -> O. The
following concepts of normality and approximative compactness are crucial
to the analysis.

DEFINITION 3. (1) A point A(x)EA(S) is called normal if A-I exists
on a neighborhood of A(x) and is continuous at A(x) and A' (x, .) is one to
one. (2) NP will denote the set of points in L p having at least one normal
best approximation from A(S).
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DEFINITION 4. Let E be a normal linear space. A subset Me E is called
approximately compact if for every x E E and every sequence {M,,} eM
with Ilx - M"II ...... infmE,1f Ilx - Mil, there is a subsequence M,., and an M oE M
such that M,. --+ Mo.

1

Remark. It is easy to see that an approximatively compact subset of a
normed linear space always has the property that each element of E has at
least one closest point in M.

LEMMA 7. Let M be an approximatively compact subset of a normed
linear space E. Suppose x E E has m E M as its unique closest point in M
and let {x,,} be any sequence converging to x and {M,.} be any corresponding
sequence of closest points in M. Then 11M,. - M 11--+ o.

Proof See [7, p. 388].

In the following we shall assume that the set Ii(S) is approximatively
compact. In addition we shall assume that each bounded sequence l}'k} in
A(S) has a subsequence l }'k) converging in measure to some limit y E A(S)
and that if y is a normal element in A(S), then also II y - Yk 11--+ O.,

Remark. This assumption is satisfied by the standard approximating
families such as the rationals and exponentials (see [8] and [3], for
example).

The proof of the following "existence" lemma is straightforward but rather
lengthy, so we shall omit the proof. It may be found in [6].

LEMMA 8. Let f be a given element of L p 1 < p < 2 and assume that f
has a unique best approximation A(xo) E A(S) from A(S) such that A(xo) is
normal. Then for each e ~ 0 there exists at least one element Ye E A(S) such
that

(we shall call Ye best e-approximation to f)· Moreover, if e,. --+ 0 and Y,. is a
best e,.-approximation to f, then II y,. - A(xo)llp --+ 0 and for all v sufficiently
large, Y" = A(x,.) for some xl' E S where x,. --+ X o as v --+ 00.

LEMMA 9. Let fo E L p and Xo E S be such that inf11hll > I F"(fo' xo' h, h) =
'7 > 0, where F"(fo, xo, h, h) is defined by the quantity (*) of Corollary 1.
Then there exist neighborhoods U of fo and W of X o (W c S) such that
infllhll = I lime_o F:(f, x, h, h) ~ y//2for all (f, x) E U X W.

Proof Suppose the lemma is false. Then there exist sequences {h,. f c R'V,
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je,.feR, U,.}eL p , and {x,.leS such that Ilh,.II=1 and h,.-+hER'\
e,. -+ 0, f.. -+ fo' x,. -+ X o for which F;: (f.., x," h,., h,,) < r,/2 for all v. But

where E,.(t) = A (x,.)(t) - f,.(t).
But the integrand of I.. is nonnegative and converges fJ..a.e. to

((A '(.X'o. h)(t))2/IA(xo)(t) - f(t)I)2- p
• Hence by Fatou's lemma,

r I·b (A'(xo, h)(t»2
l~ I,. ~ pep - I). a IA(xo)(t) _ fo(tW p dfJ..

Lebesgue's dominated convergence theorem show that J,. converges to
pJ~IA(xo)(t)-fo(t)IP-1 A"(xo,h,h)(t) sgn(A(xo)(t)-f(t))d,u as v-+oo.
Thus, r,/2 ~ lim,. F;'(I,., x", hI"~ h,.) ~ F"(/o. X o' h, h) = r, > O-a con
tradiction. I - ,

Remark. For later purposes we note here that the conclusion of
Lemma 9 can be recast in the following form: "There exist neighborhoods U
of fo and W of X o (We S) and eo> 0 such that F;'(F, x, h, h) ~ r,/2 for all
(f, x) E U X W, 0 < e ~ eo, and hERN with II h II = 1."

We now have the following theorem which is one of the main results of
this paper.

THEOREM 3. Let fo E L p (;i, [a, b1). 1 < p < 2, and suppose that fo has
A(xo) as its unique best approximation from A(S), where A(xo) is normal
and A(S) is approximatively compact. Moreover suppose that infllhll~ I

F" (10' xo' h, h) = r, > O. Then there is a neighborhood Uoffo such that each
fE U has a unique best approximation from A(S).

Proof. From the normality of A(xo) and Lemma 7 there is a
neighborhood 0 of fo such that each fE 0 has at least one best approxima
tion from A (S) (That is, suppose not. Then there is a sequence {f.. I
converging to fo such that no best approximations to J,. from A(S) is in
A(S). Let Yv be any best approximation tofv from A (S). By Lemma 7 y,.-+
A(xo) and by normality, y,. =A(xv) for all v sufficiently large for some
x v E S-a contradiction. This shows in fact that we may assume that every
fE 0 has all its best approximation from A(S) actually in A(S).)

Suppose the theorem is false. Then there exists a sequence {f..l such that
f.. -+ fo and such that each f.. has at least two distinct best approximations in
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A(S), say, A(xv) and A (y,,). By Lemma 7, {A(x,.)} and {A(y,,}} both
converge to A(xo) and so by continuity of A -1 at A (xo), X,. -> X o and y,. -> Yo'
By Lemma 9, there are neighborhoods U and W of fo and X o respectively
and a constant" > 0 such that infllhll~ 1 lime_oF;(f, X, h, h);;:: ,,/2 > 0 for all
(J. x) E U X Wand hence lime_oF;'(J, x, h, h);;:: ,,/2> 0 for all (J, x) E
U X Wand all II h II = 1. By Taylor's theorem we have

Fe(/," Yv) = Fe(fv' xv) +F;(fv' x,., h,,} +A~/2F;(fv' Zv' h v' hI,)'

where A,. = II Yv - x,. II, h,. = (Y,. - X,.)/A" and z,. = x,. + O,.h,. for some
0" E (0, I). We may assume that v is sufficiently large that f,. E U, and x,., y,.
and z,. are in W. Thus (Fe(f"'YI')-Fe(Jl',x,.)-A,.F;(/, .• x,,,hJ)/A~=
!F;'(/,.,z,,,h,.,h,.). Now taking the limit on both sides as e->O we obtain
using Lemma 8, the following inequality: F(/,., y,.) - F(/,., x,.)
A,.F'(f." x,., h,.) = A~/2Iime_o F;(f,., z,., h,,, h,.). Now F(/,., yJ = F(/,., x,.)
by hypothesis and F'(J,., x", h,.) = 0 since x,. is a local minimizer of F(/,,, )
in S and so we have 0= (F(/,., y,.) - F(f,., x,.) - A,,£'(/,.• x,.• h,.»/A~ =
! lime_oF;(/,., Z,,, h", h,.);;:: ,,/2 > Q-a contradiction. I

In order to apply Theorem 3 we need to be able to show that there are
functions with unique best approximations which also satisfy the second
derivative requirements. The following two lemmas establish that the supply
of these is abundant. The first of these, Lemma 10. is a standard result which
we will not prove. A proof (in the special setting of this paper) may be found
in [61.

LEMMA 10. Let M be a nonempty subset of a strictly convex normed
linear space E. Then the of elements having unique closest points in M is a
dense subset of the set of elements having at least one closest point in M. In
fact if y E E has m E M as a closest point then each element of the form
y,.\ = AY + (I - A) mA E (0, I) has m as its unique closest point in M.

LEMMA II. Let fE L p , I < p < 2, and xES. Suppose that for each

h*O,

(
I) I·b (A '(x, h)(t»2 dp, °

'Q jE(t)1 2 -P >,

(2) ( _ I) l·b (A'(x, h)(t»2 d
p "Q IE(tW-P P,

.b

+ I IE(t)IP-' A "(x, h, h)(t) sgn(E(t» dp, ;;:: 0.
'Q
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.b

+ I IE.t(t)IP-1 A "(x, h, h)(t) sgn(E.t(t» d/1 >°
·u

for each AE (0,1), where E\(t)=A(x)(t)-fA(t) and where ft(t)=),J(t) +
(l-A)A(x)(t).

Proof Substituting fA for f in (2) we obtain

1 .b (A'(x,h)(t»2
(4) A2-p (p - 1)L IE(tW p d/1

.b

+ AP- 1 I IE(t)\P-1 A "(x, h, h)(t) sgn(E(t)) d/1.
. u

But

l-A 2- p
.b (A'(x,h)(t»2

(4)=(2)+(p-l) A2-p L IE(t)\2-p d/1

.b

-(1-AP- 1) j IE(t)IP- 1 A"(x,h,h)(t) sgn(E(t) d/1.
·u

Clearly, if the second integral in (4) is nonnegative then (2) ~°implies
(4»0. If the second integral is negative then -(l-AP-')f~IE(t)IP-1

A"(x, h, t)(t) sgn(E(t))d/1>O and so again (4»0. Thus for each h*O,
(4»0. On the set T={hER N lllhll=l and f~(A'(x,h)(tW/
IE(t)1 2- Pd/1 = oo} we have

, f \( 1) j.b (A '(x, h)(t))2 d
In I p- 2 P /1
heT .u IE,\(t)1

+(IE.t(t)IP~IA"(X,h,h)(t)Sgn(E.t(t»d/1( =+00 > 1.

To finish the proof we note that a simple check shows that L = {h ERN:
(1) < oo} is a subspace of R N which we may assume is nontrivial.

The map

h ---'> (p _ 1) l,b (A'(x, h)(t))2 d
• u IEA(tW-P /1

.b

+ I W\(tW- 1 A "(x, h, h)(t) sgn(E.t(t» d/1 == C/>(A, h)
. u
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is continuous for each fixed A E (0, 1), L is closed, and cP(A, h) > 0 so for
each A E (0. 1) we have infllhll~ 1 cP(A, h) = 15,\ > O. Thus, for any h with
Ilhll = 1, (3) ~ minj15.I , If > O. I

Remark. The condition that J'~ (A'(x, h)(t))~/IE(t)I~-Pdp > 0 for each
h =1= 0 is satisfied in the case that x is a normal point (since then A I (x. ) is a
one to one map). For the standard nonlinear families (see [1] and [31 for
example) any local best approximation must be normal. Thus for these
families at least we see that the set of functions satisfying the hypotheses of
Theorem 3 will form a dense subset of those having best approximations
from A(S). The main purpose (thus far) of the smoothing technique has been
to establish Theorem 3. Having done this the following three results are
proved exactly as in [11 and so they will only be stated. Theorems 3. 4 and 5
are extensions of the corresponding results in 11].

LEMMA 12. Let M be an approximatively compact subset of a strictly
convex normed linear space E. Suppose there exists a set ScM with the
following properties:

(a) The subset T={xEE\MIPm(x)nS=I=0} is dense in E\M,
where Pm(x) is the subset of best approximations of x from M.

(b) For each xoET, AE(O,l) and moEPm(x)nS there is a
neighborhood. V.I(XO) ofAxo+ (1 - A) m o such that for all x E V,\(xo), Pm(s)
is a singleton.

Then the set U of all elements in E having unique best approximations in
M contains an open and dense subset of E.

Proof See [1, p. 172],

THEOREM 4. Assume A(S) is approximatively compact, that NP is a
dense subset of L p (1 < p) and that

. .b (A I (x, h)(t))2
mf I dp > 0

II hll=I' Q IE(tW-P

whenever A (x) E NP and f =1= A (x), then the set U of all elements in L p

having a unique best approximations in A (S) contains an open and dense
subset of L p'

DEFINITION 5.

R~[a,bJ= )P/qIP=,~o aix'.q=,~O bix',q(x»OxE [a,bJ(.

As on important application of Theorem 4 we have
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THEOREM 5. The set U of functions in Lp[O, 1], 1 <p < 00 having
unique best approximations in R~ contains an open and dense subset of
Lp[O, II. (Here we are using Lebesgue Measure.)

II. CONTINUITY PROPERTIES

OF THE BEST ApPROXIMATION OPERATOR

In this section we shall study the continuity properties of the best L p 

approximation operator for I <P < 2. We shall employ the perturbation
technique of the previous section in our analysis. As will be seen, this allows
us full use of the implicit function theorem which is the main tool in the
analysis. From the analysis of section I, we have the following "easy" result
on continuity.

THEOREM 6. Suppose fo=Lp[lJ, [a,b]], 1 <p< 00, has A(xo) as its
unique best approx. from A(S). Further assume A(xo) is normal, A(S) is
approximatively compact and that

.b

+ I IE(xo, t)IP-1 A "(xo' h, h)(t) sgn(E(xo, t) dlJ > O.
-0

Then the best projection operator P for A(S) is continuous at fo.

Proof By Theorem 3, P is well defined on a neighborhood of fo and
since A(S) is approximately compact, and since A (xo) is normal we have (as
in the proof of Theorem 3) that P(fJ --+ P(fo). From Theorem 5 and its
proof, the following is immediate.

COROLLARY 2. In the case that IJ is Lebesgue measure on [a, b] and
A(S) = R~ then the best approximation operator is continuous on an open
and dense subset of Lp[a, b], 1 <P < 00.

In the case p;;;: 2, Wolfe showed in [2] that at a point fo as in Theorem 5
above, the operator P is infact dijJerentiable and hence Lipschitz continuous.
Surprisingly this is not necessarily the case if 1 <p < 2 even with a linear
approximating family as will be shown presently. Throughout this section we
will assume that A(S) is approximatively compact. Moreover it will be
necessary to use a more precise and, urifortunately, more cumbersome
notation since the function f will now be considered a variable.

As before let Fe(I. x) = f~ [(A(x) (t) - f(t»2 + e21P/
2 dlJ ==

640/34/13
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J~ (£2(1, X)(t) + e2Y'/2 dp. for each fE L p and xES. For a givenJ, necessary
conditions for xES to be a local minimum of Fe(J, ) are given by

(1) (llp)F;(J,x,h)=Oforall hER",

(2) (lip) F;'(J, x, h, h). 0 for all hER".

Conditions (1) and (2) may be cast in the following equivalent form

(1)' 'IIe(J,x) =0,

(2)' (h, D'IIe.AJ, x)). 0 for all hER \' where 'IIe(J, x) =
('II~(J, x), ... , 'II~(J, X))T with

u.J(1, ) =~ oFe(J, x)
'i'e , X

pox)

.b P - 2 oA
= I 1£2(J,x)(t)+e2j -

2
-£(J,x)(t)-e-(x)(t)dp.J= 1,...,N

'u (iX,

and where D'IIe-AJ, x) is the Jacobian matrix of 'IIe(J, x) with respect to x
and (, > is the usual inner product on RoY. Let D'IIejJ, x)( ) denote the
Frechet derivative of 'IIe(J, x) with respect to f A simple calculation shows
that for each g E L p,

D ) (J, )( _ I·b g(t)(oAlox))(t)
'IIe.t ,x g)--.u (E2(J,x)(t)+e2f-P2

(p-l)E 2(J,x)(t)+e2
X 2 ) , dp., j = 1,... , N

E (J, x (t) + e"

and D'IIe.t(J, x)(g) = (D'IIe.t(J, x)(g), ... , D'If~.t(J, x)( g))T. We now have the
following basic result.

THEOREM 7. Assume fo E L p and Xo E S are such that A(xo) is normal
and is the unique best approximation to fo from A(S) and satisfies

(I) inf (p-l) ( (A'(xo,h)(t~)~p dp.
IIhll~1 'u IE(/o,xo)(t)1

,b

+ I IE(/o, xo)(t)I P- 1

. a

X sgn(E(/o, xo)(t)) A "(xo' h, h)(t) dp. = 'I > O.

Then there is an eo > 0 such that for each e with 0 < e ~ eo there exist
neighborhoods Ue offo and Ve of X o and a map x e: Ue --> Ve such that

(a) If/e(J, x e(/)) = 0 for all fE Ue,

(b) 'IIe(J, x) = 0 with fE Ue and x E Ve implies that x = x e(/),
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(c) Xi) is differentiable on Ue with x;(f)(g) = DIf/;';(f, xe(f»
(Dlf/ejf,xe(f»(g»for all gEL p • In fact the map is continuously differen
tiable.

Proof We first note that by Lemma 9 there exists an e 1 > 0 and
neighborhoods U of fo and V of X o respectively such that 0 <e:::;; el ,

(f, x) E U X V and II hll = 1 imply that F;(f, x, h, h) ~ 11/2> O. Also, by
shrinking e l further if necessary we may assume that Fe(fo' ) achieves a
unique minimum at some xe E V. (This is an easy consequence of Lemma 8
and Taylor's theorem.) Thus If/e(fo, xe) = 0 and the condition
F;(fo,xe,h,h)~11/2>0 for allllhll=1 implies that DIf/;';(fo,x.. ) exists
since (h, Dlf/e...{f, x)h) = F;'(f, x, h, h) so that Dlf/e ...{fcp x e) is positive
definite. Also the maps (f,x)--+Dlf/ejf,x) and (f,x)--+Dl/le.r(f,x) are
easily seen to be continuous on U X V in the product topology on L p X R'\'.
Thus, we may apply the (generalized) implicit function theorem [9. p. 230 I
and the result follows. I

Now using the differentiability of the map xe() and the fact that for
appropriately small e, the best e-approximation operator Pe is given by
Pe(f) = A(xe(f» is follows that Pe is differentiable with respect to f But
then the generalized mean value theorem will yield that Pe is Lipschitz
continuous at fo. That is, there exists a constant K e depending on fo and a
neighborhood W of fo such that fE W implies that II Pin - PAfo)ll p :::;;

Kellf-follp • (For the details of this argument see [21.)
It is even possible to show that we may use the same neighborhood W for

all e sufficiently small. The question then is what happens as e -+ O? We
know that Pe(f) -+ P(f) and Pe(fo) -+ P(fo), where P is the unperturbed best
approximation operator for A(S). If K e stayed bounded then the Lipschitz
continuity of P could be established. As the next example shows, however,
this program will not succeed in general.

EXAMPLE. Let 11 be Lebesgue measure on [-I, I], P = 3/2, f(t) == t and
consider approximating f by constant functions. That is, let S = R and let
A (x)(t) == x for each x E R, t E [-1, I]. Finally, let g(t) = 1/v1tl. First, it is
clear that the unique best approximation is x = 0 and this is true for each of
the perturbed norms also. 'Thus, for all e ~ 0, xe(fo) = O. Also, for general f
and x we have

DI/I (f,X)=I·1 [( lrt)_X)2+ e2]-1/4 3/2(f(t)-x)~+e2 dt
e.x' __ I J\ (J(t)-x)2+e~ ,

.1 1
Dlf/ejf, x)( g) = I I(f(t) - X)2 + e 2]-(/4 Ii"7J

- -I viti
(1/2)(f(t) - X)2 + e2

X (f( ) )2 , dt.t - x +e"
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In particular, for A arbitrary but sufficiently small that x;(lo + Ag) exists we
have

x;(lo + Ag)(g)

.1 _1_ I (1/2)(t+AIW '12 - xe..t)2+ e2 dt
-'-,ltI 112 [(t+Altl l12 -xe"t)2+ e2]1/4 (t +Altl- 1

/
2-xe..d2+e2

1
,1 I 3/2(t+Altl-'I2-xe"tf+e2dt

'_1 [(t+Altl II2_ xe"t)2+ e2jll (t+Altl- I'2- xe..t)2+ e2

where xe..t == xe(lo + Ag).

CLAIM. lime.A~ox;(lo + Ag)(g) = 00 (where e > 0 though this is not
really necessary). Since

and I ~ (3/2a 2+ b2)/(a 2+ b2)~ 3/2 if !al·lbl > 0 we have

, I J~I(ltll/2)-I([t+Altl-112-xe ..l)2+e2jl'2)-ldt
xe(lo + Ag)(g) ~ '3 J~ I ([(t +AItl- l12 - xe"Y + e2]1/2)-1 dt

Also since xe.A ~ x(lo) as e, A~ 0 it is sufficient to show that

lim
e•.t,x--+O

J~lltl-1/2 cP(e,A,x)(t)dt

J~ 1 cP(e, A, x)(t) dt
00,

where cP(e, A, x)(t) = [(t +AItl- I
/

2 _X)2 +e 2 1- 1
/
4

• We require the following
lemma.

LEMMA 13. Let lfI be a positive even integrable function on [-I, Ij that
is continuous except, perhaps, at t = 0 and that satisfies lfI'(t) < 0 on (0, Ij.
Let cP be a positive continuous function on [-I, I]. Define a function g on
[0, II by

Then

g(o) < g(O)

where J b = [-I, -0] U [0, Ij.

for all 0 < 0 ~ 1.
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Proof Since f/J and f/J'II are continuous on Jb , for 0> 0, g'(o) exists and
a straightforward calculation shows that

'(0) = [f/J(O) + f/J(-o)][L cI 'II(t) f/J(t) - '11(0) LcI f/J(t) dtl < 0
g (L

cI
f/J(t) dt)2

since '11(0) > 'II(!) for all t E Jb , t #= ±o. I
We can now prove the claim above. Let {A'nf, {xnf and {en} be arbitrary with
An,xn-+O and enlO. Let f/Jn denote f/J(en,An,xn) and let 'II=g=ltl- u .
Then by Lemma 12 we have for each n and each I ~ 0 > 0 that

Fix O. Then

L'II(t)f/Jn(t)dt L(l/ltl)dt -210g(0)
cI -+ cI - --:-:-:---:::-07;:-L

cI
f/Jn(t) dt L

cI
(1/Itl) 1dt - 4(1 - 01/2)

since f/Jn(t)-+ltl- l12 uniformly onJb • Thus

. f ~ I 'II(t) f/Jn(t) - 2 log(o)
!~~ f~1 f/Jn(t)dt dt~ 4(1-0 1

/
2)

But -210g(0)/4(1 - 0 1
/

2
) -+ +00 as 0 -+ 0 so

. J~I'II(t)f/Jn(t)dt I
11m "I = +00.
n~OC! J-I f/J n(t) dt

Finally, we may use the claim to show that the map 1-+ x(f) is not
Lipschitz continuous at 10' (Note that in this example, x(/) = A(x(/» =
P(f).) To do this, suppose there were a constant K and a 0> 0 such that if
II/-.foll<o then Ix(f)-x(fo)I~KII/-/oll. Then in particular,
Ix(fo + Ag) - x(.fo)1 ~ K II gil for all A sufficiently small and positive.

But since Ixe(fo +Ag) - xe(fo)l/IAI = Ix;(/o +A*g)(g)1 for some
o< ..1.* < A and since by the claim lime•tHO x;(/o + ag)( g) = +00, then for
all e and a sufficiently small and positive, say, Ix; (/0 +ag)(g)1 > 2K II gil.
Thus for all sufficiently small and positive e and A, Ixe(/o + Ag) - xe(fo)I/A >
2K II gil· But then

K II gil ~ Ix(fo + A~) - x(fo)1

= lim Ixe(fo + A.g) - xe(fo)1 > 2K II gil
e~O A.
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for all A. sufficiently small and positive so we have a contradiction. Thus, P is
not Lipschitz continuous at fo.

Remark. The above example can be generalized to other values of p and
other choices of f, etc. On the other hand, using the inequality, Ilx~(f, )11 ~
II DV!;.~(f, xe(f))llil DV!ejf, x.(I))1I it is not difficult to show that if

.b dfJ.

.l a I£(fo. x(fo))(tW-p < 00,

where A(x(fo)) is the unique best approximation to fo then an inequality of
the form II p(f) - p(fo)llp~ K Ilf- fo Iloc is valid. Thus if we are dealing with
a discrete set and using counting measure and the error curve does not
vanish at any of the data points. The best approximation operator will be
Lipschitz continuous. For a detailed analysis of the continuity properties of
the best approximation operator see [10].
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