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INTRODUCTION

In this paper we shall consider certain questions regarding the uniqueness
of best approximations and the continuity properties of the best approx-
imation operator for nonlinear approximation in L, spaces with [ <p <2.
In particular we shall study the following two questions:

(1) Given L,(u, [a,b]) with 4 a complete regular Borel measure on
la,b] and 1 < p <2 and given an approximating set M < L,, what is the
topological “size” of the set of elements in L, having unique best approx-
imations in M?

(2) Given f,€L, and M as in (1), does the best approximation
operator P satisfy a Lipschitz condition on some neighborhood of f,? That
is, is there some k& > 0 and some J > 0 (depending only on f,) such that
| f =15l < & implies that |[P(f) — P(f)| < K||f—/ol1? (If this is the case, we
would say that the approximation problem is stable provided that K is not
too large.)

For 2 < p < oo these questions were answered in |1] and |2]. respectively,
for a large class of approximating families that includes generalized rational
functions and the so called I-families [3]. Some results on uniqueness and
characterization for the case p=1 may be found in [4] and [5]. The
techniques used in [1]| and [2] relied on the continuity of the second
(Frechet) derivative of the error functional with respect to the parameters. As
will be seen, for 1 < p < 2 these second derivatives need not exist much less
be continuous.
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NONLINEAR L, APPROXIMATION 13

Using a smoothing technique described later, we shall show, for example,
that the set of elements having unique best approximations from the set R},
of ordinary rational functions contains an open and dense subset of L, for
each 1 < p < 2. This extends the corresponding result in [1] to those values
of p. In contrast to the results of [2], for 1 < p < 2, we show that even for
finite dimensional linear approximation, no local Lipschitz conditions holds
(at least when Lebesgue measure is used). We shall show that under certain
conditions an inequality of the form || P(f) — P(f,)ll, < K| f—fo|l,. obtains.

Approximation Problem

The approximation problem we shall consider is as follows: Let 4 denote
a continuous map from an open subset S of R to the normed linear space
H. Given f€ H we seek an x, € S such that ||4(x,) — f]| = inf,.c5 [|4(x) — 1|,
where || - || is the norm on H.

In the cases we consider, H will be L,(u, [a, b]), where u is a complete
regular Borel measure on (g, b| and 1 < p < co and usually p < 2. Moreover,
we will assume that the map x—> 4"(x, -, -) exists and is continuous on .S,
where A”(x, -, +) denotes the second Frechet derivative of A with respect to
x. We will usually shorten L ,(u[a,b]) to L,,.

I. CHARACTERIZATION AND UNIQUENESS OF BEST APPROXIMATIONS

For fE€ L, fixed, let F(x)=[}|A(x)(t)— f(t)]" du p> 1. Then finding a
best approximation to f from A(S) = {A(x}|x € S} is equivalent to finding
an x€ S that minimizes F. The chain rule and Lebesgue’s dominated
convergence theorem easily yield the following formula for the derivative of
F in the direction A:

b
F'(x.h)= p_l |Ax)(r) — f(O)P " sgn(A(x)(t) — £(1)) A" (x. h)(t) du
for all h € RY, (1)

At a local minimum of F we, of course, have F'(x, k) =0 for all h €R".
This immediately yields the following basic lemma.

LEMMA 1. Suppose A(x) € A(S) is a local best approximation to f€ L,
where p > 1. Then

ib |AC)(8) —f(O]" " sgnA(x)(1) — f(8)) A" (x, h)(1) du =0

-a

forall hER®.
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If p > 2 one would also have the necessary condition that F”(x.h, h) >0
for all A€ R" if x is a local minimum of F. However, for 1 < p <2,
proceeding formally and differentiating (1) under the integral sign we arrive
at the expression

(A (x, 1))
p(p— 1)_‘0 TExDOE " o)

b
+p | |ECe. )P~ sgn(E(x, 1)) A"(x, h, h)(¢) du,

where E(x, 1) = A(x)(t) — f(¢).

At a local best approximation E(x,t) will have sign changes in |a, b]| so
that the first of the integrals in (2) may be infinite. (The second one,
however, is always finite.) This indicates that F"(x, A, #) may fail to exist.
We should note here that the formal differentiation process does nor yield (2)
if p =1 and for this reason the techniques of this paper will not apply to that
case. The problem of computing F”(x, &, h) for p=1 is discussed in |4].

Our first task is to prove that F”(x, A, h) exists and is equal to (2) if (2) is
finite. This proves to be suprisingly delicate and we require several
preparatory lemmas. In addition we shall adopt the following convention.

Convention. Given f€L,, 1<p<2 x€S, h€R* the function
(A'(x, ))()?/|E(x.1)*~" shall be given the value zero whenever
A'(x, h)(t) =0 even if E(x,t)=0 at the same .

LEMMA 2. Let {g,}, AER, A+ 0 be a family of u measurable functions
on |a, b} that are finite valued u. a.e. and converge to a p.a.e. finite function
g with g(t)>0 on |a,b] as A-0. Let G, ={t|g,(t)<0} and G,=
it| g(t) = 0). Then if u(G,) = a we have lim, _, u(G(4)) € a.

Proof. See [6. p. 21].

LEMMA 3. For all a, b, and & real with b+ 0 and 0< J <1 the ine-
quality
|la+ b’ —|al’| |
5] = a|'?

is valid.

Proof. See |6, p. 22].

LEMMA 4. For all a and b and 0 < 6 < | the inequality ||a|® —|b]® | <
la — b|® holds.

Proof. Elementary. [
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Lemma 5. If {®,} is a sequence in L, converging to €L, 1 <p<2
then |®,|P~' > |®|P~" in L,, where g = p/(p—1).

Progf. Using Lemma 4 we have
b b
[ 1opt—10p- <[ (0, - 0P~y du= |0, B do
-0 as v—ooo. I

THEOREM 1. Let fE€ L, (u [a,b]), 1 <p<2, where u is a complete
regular Borel measure. Let x € S and h € R be fixed. Then the functional
F(x)= 2 1A(x)(®) — f()P du is twice (Gateaux) differentiable in the
direction h provided that [% A’ (x, h)(t)*/|E(x,t)>™" du < oo, where E(x,t) =

A(x)(t) — f(t) and where the integrand is defined by our convention at all
points where the numerator vanishes. In fact

(A (xh)(0)’

F'(x,h, h)=p(p — I)J | E(x t)[z"7

40| |ECx 017~ 47 (e b, )0 sen(EQx, 1)

Proof. Let x€ S and A #0 in R" be fixed. Since x is fixed for the proof,
we will use E(r) instead of E(x,t) to denote A(x)(t) —f(¢). Similarly, for
each 1, E,(f) will denote A(x + Ah)(t)—f(¢). Now, (1/p) F'(x,h)=["
|E@)P~" sgn(E(t)) A’ (x, h)(t) du. By definition, F”(x, h, k) = lim, _o((F’'(x +
Ah, k) —F'(x,h))/A) and F'(x+Aih,h)—F'(x,h) can be written
(1/D)[(F'(x + Ah, h) — F'(x, h)| = I,(A) + I,(4) + I;(1), where

L) = [ IEAOP ™ (4G -+ Uh, B)(E) — A4°(x, YD) sgn(E(0) s
LW = [ (B~ = [EOP~) 4"(x )0 sgn(E, () dis
and
b
I3(h) = i |E(@)F =" A" (x, h)(t)(sgn(E, (1)) — sgn(E(r))) du.

We shall consider these three integrals separately.

CLAIM 1.

lim (1,G)/2) = [ 1B sgn(EQ) A"(x, b, b(E) i

640/34/1-2
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Proof of Claim 1. Let h,(t)=sgnE,(t), hy(t)=sgn(E(t)), w,(t)=
(A" (x + An)(1) — A’ (x, h)(6))/A, and wy(t) = A”"(x, h, h)(¢). Note that E,(¢) =
E(t) + 4,(t), where 4,(t) = A(x + Ah)(t) — A(x)() = AM(4' (x, h)(t) + OA)(D)).
where ||O(A)||,/|A| <M for all 0 <|A|<4,, where M is independent of A.
From this it follows that h,(r) = h,(t) except perhaps on the set C(A)=

{tIE@) <14,(0)]}. Now

[ IEAOP ™ 100 v, — LEOP " hof®) wa(0)] da

b
< IEOP ™ @) lwalt) = wo(e)l du

+ 1 IO LEOP ™ hylt) = L E@P ™ ho(0)] da

b
<[ IEAOF ™ 10s®) — w0l de
+ [ a0l a0 0~ | E@P " da

b
+ | [Wo(E@I" ™" Thy(e) — ho()] du
=J,(A) + J,(A) + J5(4).
We have the following, using Holder’s inequality, where ¢ = p/p — 1:
JiA) IELZ 1w = wolly»
LA < woll, 11ELP~H = 1EP 7,
b
A <2 [wo( N E@P™ du
<2lwolly | IE@F du <2l wolly 14,017

Then Lemma 5 and the existence of A”(x,, ) imply that J,(4)~0,i=1,2,3,

and claim 1 is proved.

CLAIM 2.
PA (6 RO)

o) _
S e e

hm ==

if the integral if finite.
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Proof of Claim 2. Assume the integral is finite. Define g,(t) by g,(t)=
NE @)~ —|E@)’~"] sgn(E,(t)) A'(x, h)¢) - (1/A). As in the proof of
claim 1, let 4,(t) = A(x + Ah)(t) — A(x)() = A4 ' (x, h)(¢) + O(A)(¢)) so that
Ey()=E@) +4,(0). Let S@A)={r]|d'(, ))(OI<2]0A)0)}, B*(A)=
{t|8:(¢)> 0} and B~(4) = {t| g,(1) <O}

We first note that B~() > {t| g,(t)=0} =B,, where g,(t}=(p—1)
((A"(x, B)())*/IE(£)]*~P) so that u(B~(A)) > u(B,) for all . On the other
hand, g,(t) — g,(¢) a.e. and g,(¢) is finite valued a.e. since the integral is finite
and so by Lemma2, lim, ,u(B (1)) <u(B,). Thus, lim, ,u(B (1)) =
u4(B,) and hence u{¢| g,(t) <0 and g4(¢) > 0} - 0 as 1 —» 0. We now write

1y b
B _ " gy du
= -|-C(Jl) ga(t) du + J'n 5 ga(t)du + ‘o . g.,(2) du,
where

2 W=B'HOSW)  ad @ D=BDNSE),

: _ e i
1 | e®du ‘ <J ’ 120 T 0) { A Ol

- S(A) EXYEN) Ill
<2| ' Eop- — E@p-' | 12RO,

SA) ',”

0@,

S2ELP~ = 1EPTH,

1]
S2M| BT = EPT

and by Lemma 5 this tends to zero as 1 — 0. To consider the other two
integrals, first write g,(¢) in the form

_EQ+ 4,0 - IEQP~" 4,0)

8= X0 2 sen(E() +4,(0)) 4’ (5, h)(e).

On the set 2~ (A), sgn 4,(t) = sgn(1) sgn(4’(x, h)(t)) by definition of S(4).
Thus,

LB + 4,0~ IEQF ™ 14,00 1o o 2
‘[ﬂ‘(/l) lAA([)l 4] |4’ (x, h)(¢)| du
_ lEQtaor -0
‘- ENG)
X A" (x, h)(1)| du

14" (x, h)(2) + OA)(@)|
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HE@ +4,(0F " = |E@)P""]

o 4,(0)] (A’ (x, h)(1))* du
‘ bt et [OGNO) A’ (x, h)(2)]
+ }Qﬂ) HE(®) + 4,(0)] \E(t)P | an

< (by Lemma 3)-’;7(1)%@ +_|4 " HE ()P

_ p-1; 1O (4" (x, h)(@)|
O Al A" (x, B)(t) + O(A)(0)] it

where (E(f) + A,(1)P " —|E@)|"~")/4,(¢) is defined to be

sgn £(¢)

MRS

if 4,(6)=0.
But

[ @eEno?
Q-(1)

_ XD
EQF

jn—mrws |E(e))*?

A'(x, B)(1))?
_ @ene?
B-onsg  [E()]
and since u(B ()M B§)— 0 as observed above, then this integral converges
to zero also. Also, since |4’ (x, h)(¢)/A'(x, B)(t) + O(A)(?)| <2 on R (1) we
have using Holder’s inequality

¥ o1y 1O |4 (x, B)(©)
| NE@P ™ = EOF | TG @) + 0w

<2|||E,1|p-'—|E|P—l||‘,“i,§*,)ﬁao as 10 by Lemmas.

du

Finally,

‘- g.(t) du
‘ot

_ ‘ [E(OF = E@)P~!
Jar |4]

HE (PP~ —E@))P!|

Yo+ {4,

| 4" (x, h)(t)| du (since g, >0 on 27 (4))

[4a(1)]
141

|4’ (x. k(1)

du
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[ MEOFZEOF T e nye1ace, i) + 0@)0) da
aQ+) |Al([)l

ELOP ' —|E@P' ., X
o 14,0 (4" (x, h)())" du
CE@PT - E@PY ’
* -‘Qﬂ,l) 1 14,(t)] [OQ@)(O) | A" (x. h)(0)] dp
=J,(4) + J,(4).

Since |4,(t) =|A||4’(x, h)(t) + O(A)(t)| and since |A'(x, k)(t)| > 2 |O(A)(¢)|
on 2* (), we have

[0 14"t )

, 100
FROE '

4]

Hence,

O,

b
LO<2[ EPT - BRI

<2n|E,1|"—‘—|E|"-'uq-ﬁ)\‘jiqo 2 A0

Finally, we need to show that

tim 7,0 = (p—1) | LD

Consider

L IE@P - E@P '

.‘a 14,0 (4’ (x, h)(t))” du.

By Lemma 3 and Lebesgue’s dominated convergence theorem this converges
to (p— 1) [g (4" (x h)* ()/IE(®)*7) du. But

2 EA@" - E@P

[ RO o
_ EOP = [EQP™ (s
A e v RS

=J,(A) + IQ).
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(A’ (x, h)(t)) (A’ (x, h)(1))*
< J'mwc |Et)*~? a <J’S(m |E(t)*~* *
: (A'(x, h)(1)’
o TEORT
Now
f (A’ (x, h)(1))
s~y |E@*P
1 , h 2
- J;, -)NBS (A|é?t)'2)gtp))_ d,u -0 (as above)
and
C (A (x D))
JS(,M—IE(t)IZ_p d,u—»O as A-0

since it follows easily that the characteristic function y,() of S(1) is such
that y, —» x, a.e., where yx, is the characteristic function of B, and the
integrand (by definition of B,) vanishes on this set. This finishes the proof of
claim 2.

Cramm 3. lim, _,I;(A)/A =0. Let e,(t) = |E@)P ™" A’ (x, t)(¢)(sgn E {¢) —
sgn(E(t)). Then e, (t)=0 except, perhaps, if |E(t)<|4,(t). Let T(A)=
{t|O<IE@) L4, and lee C,(A)=TA)NS@A) and C,(A)=
T(A) M SC(A), where S(A) is defined as in claim 2. Then

LA o el e
du = d
A <-IT(.\) M‘ ,U JC.(.U |'1| a
lea(s)]
- du.
o Tl *
But
: le (1)l
d
e TAT#
: A'(x,
=‘ |E(t)lp—l | (x h)(t)| d,U
Jeyn 4]
<2 l |E@)P " M du

ey 4]



NONLINEAR L, APPROXIMATION 21

‘ 1 |0
<2 L aer 19 4, < 14,15 | 0@)],— 0

4]
as 4-0.
Also
) fe (o)l
Dewr TTAT
SCpAd) Ml
o0 E@PT 4@,
=2 oA e W) e
- E@P X
X _— ! 8 d
<2 T @ e
i o1 10,
+ 2-|c,u, B@P S A DOl da
O EPT 2
<2 R e ) du
' oo OO A/ (x, )(0)| du
+2'|Czw|E([)| Al A" (e, B)(E) + OA)(@))
- A hO) - o1 [0
<2 TR O
=J,(A) +J,(A).
The inequality
. 5 ;
JC N IAl(t)|"" lOTA)|(t)| du < HA.xllﬁ“’ | (!)L)“

shows that J,(A)— 0 as 4 — 0. Let x, denote the characteristic function T(A).
Let ¢t € [a, b] be such that y,(t) » 0 as A — 0. Then there exists a sequence
{A.} - 0 such that x, (¢)=1 for all v. But then € T(4,) and so 0 < |E(t)| <
|4, (¢)| for all v. But |4, ()] - 0 u.a.e. (since it converges to zero in L,) and
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so {t]x,(t)» 0} is a set of measure zero. Thus y, -0 w.a.e. and hence
Ji(A)—0 as 1-0. This proves claim 3 and completes the proof of
Theorem 1. |

CoROLLARY 1. Let f€ L, and suppose x € S is such that A(x) is a local
best approximation to f from A(S). Then for each h € R" we have

(1) 2| IE@P~" sen(E@) 4" (x, W) di = O,

@ -y Ol
* PJﬁ |E()P~" sgn(E(t)) A" (x, b, h)(0) du > 0.

Proof. Of course (1) is just Lemma 1. To show that (2) holds, we first
note that if [5([4'(x, ))(O)]*/|E@)*")du=00 then (2)=o00>0. If
{8 ([A"(x, B)®)]*/|E(®)|*~") du < oo, then by Theorem 1, F"(x,h, h) exists
and equals the left hand side of (2) where as before F(x) = ||A(x) — fi5. The
function @(1)=F(x + Ak) has a local minimum at A =0 and is twice
differentiable a A =0 and hence F”(x, h, k) =®"(0)>0. |

For convenience of notation we shall denote the quantity in (2) by
F”(x, h, h) even when its value is o0.

Smoothing Technique

Since it is possible that

P RO)
), TTEOE ¢

=+

we cannot depend on the continuity or even the existence of F”(x..,.). To
overcome this difficulty we now introduce a perturbation in our problem for
which we obtain a continuous second derivative. The following lemma
defines this perturbation and establishes formulas for the necessary
derivatives. The proof is a simple application of Lebesgues dominated
convergence theorem and we therefore omit it,

LEmMmMA 6. For f€L,, 1<p<2, define F,(f.x) by F,(fix)=
2 (E¥(x, 1) + €*)?/* du, where E(x, t) = A(x)(t) — f(¢) and e > 0. Then

() limF(f20) = F(A0 = |EG 0 du
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E(x,t)A’(x, h)(t)

,  her”
B 1) + ez o7 ¥ €K

b
() Fufixh)=p

(iii) lirr(l)F;(j;x,h):F’(f,x,h)
= p | 1EG 0P~ 4" WO sen(E(x, 1) i
(ivy FJ(fix, h,h)=1I/(e)+ I,(e) + I;(e), where

A'(x, B)(®)]*
Iie)=p(p— l)f (Ezgx, t(;c+ e)gt))(l—p)/z du,

b E(x, tyA"(x, h, hXt)
. G0+ e W

Le)=p

and

b 2 A’ ,h 2
10 =p2 =P | e oh R di

THEOREM 2. Let the perturbation function F,(f, x) be as in Lemma 4.
Then

lin(l) Fi(f,x, h h)

b @)

=p(p—1)_a—|E—(x,,)T_r

b
+p | [EC 0P~ A"(x, b, h)(t) sgn E(x, 1) du

o [4 e O]

.‘a |E(X, t)|2_p dy <

Otherwise lim, o F(f, x, h, h) = +c0.

Proof. Since x and f are fixed in the proof we shall shorten F,(f, x),
Fi(f,x. h), FJ(f,x, h, h) and E(x,t) to F,(x), Fi(x, h), F!(x, h, h) and E(2),
respectively. Let {,(e), Z,(e), and /,;(e) be defined as in Lemma 4.

Cram 1.

b (4" (x, h)(1))?

. TEORT

limI,(e) = p(p — 1) |

Proof. Since (E(t) +eX)P V2L (EXN¢t) +&%)¥ P if é<e the result
follows immediately from the monotone convergence theorem.
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CLAIM 2,
lim £,(e) = p j"’ |E@)P~" A"(x, h, h)(t) sgn(E(0)) dy.

Proof.

(E*(r) + €*)P P2 E(1) A"(x, h, h)(1) l

<

(EX)®~ (1) A" (x, b, h)(0) ' —|EQP 14" (x, b R)E)
which has a finite integral. Since
lim (E(¢) + €)®2E(1) A" (x, b, h)(0)

=|E@)"~" A"(x, h, h)(t) sgn(E())

the Lebesgue dominated convergence theorem applies and the claim is
proved.

Ciamm 3. d=lim,_,I,(e)=0if

(A (x, b)(®)?

T

Proof. Let S(e)= {t|E*(t)> e} and let T(e) denote the complement of
S(e). Also, let g,(¢) = e*(4' (x, A1) *(E*(t) + )" ~¥/%. Then

HO=p—p) || Ot sl

and noting that g,(¢) may be written in the form

(A'(x, b)) e’
(EX(r) + )@ P72 EXNt) + €?

ge(t) =

we consider two cases:
(i) On S(e) we have

A'xhw)y? e <A )0

ge(t)< (El(t) + e2)(2-p)/2 e+ e2 = (Ez(t) + e2)(2—Pl/2 ‘
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But then

(A’ (x, B)(®))’
EX0) + )77

0<j addu<e

Jb (A’ (x, 1))’
s¢ G

du

du—0

as e — 0 since the integral

’4’ (@', b))

T0 R

(i) Let T(e) = {t € T(e)| A’ (x. h)(t) # O}. Then

(A, 1))
0<[ s@di=| gd<]

T(e) (Ez(t) +82)(2—17)/2
(A" (x, B))?
<o TR

du
du.
But u(T(e)) — O since u{t| E(t) =0 and A’(x, h)(t) # 0} = 0 and hence

lim| g.()du=0.

e=0./71(e)

Thus claim 3 is proved. Finally, since lim,_, [,(¢) < co and 6> 0 in any
case, if

® (A" (x h)(©)*
lo TE@F

then lim,_, F/(x, h, k)= 0. |

e-0"e

du = oo,

We now need to show that under appropriate hypotheses for each e > 0
and fE€L, there exists at least one x(e)E€ S such that F,(f, x(e))=
inf, ¢ F,(f, x). We also need to consider what happens to x(e) as e > 0. The
following concepts of normality and approximative compactness are crucial

to the analysis.

DErFINITION 3. (1) A point A(x) € A(S) is called normal if 4~ exists
on a neighborhood of 4(x) and is continuous at A(x) and A’(x, -) is one to
one. (2) NP will denote the set of points in L, having at least one normal
best approximation from A(S).
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DEFINITION 4. Let E be a normal linear space. A subset M < E is called
approximately compact if for every x € F and every sequence M }|cM
with ||x — M, ||~ inf, .\, || x — M|, there is a subsequence M, and an M, € M
such that M, — M,,.

Remark. It is easy to see that an approximatively compact subset of a
normed linear space always has the property that each element of E has at
least one closest point in M.

LEMMA 7. Let M be an approximatively compact subset of a normed
linear space E. Suppose x € E has m € M as its unique closest point in M
and let {x,} be any sequence converging to x and {M_} be any corresponding
sequence of closest points in M. Then |M,— M| - 0.

Progf. See [7, p. 388].

In the following we shall assume that the set A(S) is approximatively
compact. In addition we shall assume that each bounded sequence {y,} in

A(S) has a subsequence { Vit converging in measure to some limit y € A(S)
and that if y is a normal element in A(S), then also || y — y [| > 0.

Remark. This assumption is satisfied by the standard approximating
families such as the rationals and exponentials (see [8] and [3], for
example).

The proof of the following “existence” lemma is straightforward but rather
lengthy, so we shall omit the proof. It may be found in [6].

LEmMMA 8. Let f be a given element of L, 1 < p <2 and assume that [
has a unique best approximation A(x,) € A(S) from A(S) such that A(x,) is
normal. Then for each e > 0 there exists at least one element y, € A(S) such
that

b
Flfyd=| [0d)—fO) +e " du= inl_F(/.))

(we shall call y, best e-approximation to f). Moreover, if e, -0 and y, is a
best e -approximation to f, then || y, — A(x,)|, - 0 and for all v sufficiently
large, y, = A(x,) for some x,E S where x.— x, as v — 0.

LEMMA 9. Let f, € L, and x, € S be such that inf, _, F"(fy, x,, h, h) =
n >0, where F"(f,, Xy, hs h) is defined by the quantity (*) of Corollary 1.
Then there exist neighborhoods U of f, and W of x, (W< S) such that
infy, -, lim, o FY(f, x, h, h) > n/2 for all (f,x)EU X W.

Progf. Suppose the lemma is false. Then there exist sequences {4} < R,
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e} R, {f,t<L,, and {x,}c S such that |[h, =1 and h,—h€ER",
e.—0, f, - [y, x.— x, for which F)/(f,, x,. h,., h,) <n/2 for all v. But

" b (A (x,, b))
Fel,(.fmxva huv hu) >p(p - l)fa (E(Z(t) + e%)(Z—P)/Z

b EL(0) 475, R 1))
R e L

du=1I.+J,

where E_ (t) = A(x,)(¢) — f.(¢).
But the integrand of I, is nonnegative and converges g.a.e. to
((A7(xq, B)(£))*/|A(x,)(#) — f(2)])* 7. Hence by Fatou’s lemma,

, b (A WD)
lim 7,> PP =D 72630 =107

Le.besgue’s dominated convergence theorem show that J, converges to
pIalA)E) = £ (P~ A" (x0, b B)(1) sen(A(xo)(t) —f (1)) du as v— co.
ThuS, ’7/2 > liﬂz' Feﬂl(f‘li xv’ hv’ hl) > F”(f;)‘ xO‘ h’ h) = ’7 > O_a con-
tradiction. 1

du.

Remark. For later purposes we note here that the conclusion of
Lemma 9 can be recast in the following form: “There exist neighborhoods U
of f, and W of x, (W < S) and e, > O such that F(F, x, &, k) > n/2 for all
(Lx)EUXW,0<e<e,, and h € RY with ||| = 1.”

We now have the following theorem which is one of the main results of
this paper.

THEOREM 3. Let fo €L, (4, [a, b]). 1 < p <2, and suppose that f, has
A(x,) as its unique best approximation from A(S), where A(x,) is normal
and A(S) is approximatively compact. Moreover suppose that inf =1
F"(fy, Xg, by B) =1 > 0. Then there is a neighborhood U of f, such that each
fE U has a unique best approximation from A(S).

Progf. From the normality of A(x,) and Lemma7 there is a
neighborhood U of f, such that each f€ U has at least one best approxima-
tion from A(S) (That is, suppose not. Then there is a sequence {f}
converging to f, such that no best approximations to f, from A(S) is in
A(S). Let y, be any best approximation to f, from A(S). By Lemma 7 y,—
A(x,) and by normality, y,=A4(x,) for all v sufficiently large for some
x, € S—a contradiction. This shows in fact that we may assume that every
/€ U has all its best approximation from A(S) actually in 4(S).)

Suppose the theorem is false. Then there exists a sequence {f,} such that
f.— fy and such that each f, has at least two distinct best approximations in
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A(S), say, A(x,) and A(p,). By Lemma7, {4(x,.)} and {A4(y,)} both
converge to A(x,) and so by continuity of 4" at A(x,), x.— x, and y, - y,.
By Lemma 9, there are neighborhoods U and W of f, and x, respectively
and a constant # > 0 such that infy,, _, lim,_, F/(f,x, h, k) >7r/2 > 0O for all
(fix)EUXW and hence lim,_ ,F/(f,x,h,h)>n/2>0 for all (f,x)€E
UX W and all ||k]| = 1. By Taylor's theorem we have

Fe(.fv’ yv) = Fe(fu’ xu) + F;(.fv’ xv’ hv) + lg/ZFg(,/‘v’ zv’ hv’ hu)’

where A, =|y,— x|, A.=(y.—x,)/A, and z,=x,+6. h, for some
6. € (0, 1). We may assume that v is sufficiently large that f, € U, and x,, y,
and z, are in W. Thus (F,(f.,».)—F.(f.,x.)—AF.(f..x,, h))/Al=
3FY(f. 2z, h,, h,). Now taking the limit on both sides as e » 0 we obtain
using Lemma8, the following inequality: F(f.,y.)— F(f., x.)—
AF'(f,,x, h)=42/21im,_  F!(f.,z,, h,, h.). Now F(f.,y)=F(f.,x,)
by hypothesis and F'(f,, x,, 4,}) =0 since x, is a local minimizer of F(f,,)
in § and so we have 0= (F(f,,y.)—F(f,,x.) = A F'(f.. .. h,))/A’ =
slim, o F/(f.,2z,, b, h) > n/2 > 0—a contradiction. [

In order to apply Theorem 3 we need to be able to show that there are
functions with unique best approximations which also satisfy the second
derivative requirements. The following two lemmas establish that the supply
of these is abundant. The first of these, Lemma 10, is a standard result which
we will not prove. A proof (in the special setting of this paper) may be found
in [6].

LEMMA 10. Let M be a nonempty subset of a strictly convex normed
linear space E. Then the of elements having unique closest points in M is a
dense subset of the set of elements having at least one closest point in M. In
Jact if yEE has m €M as a closest point then each element of the form
=y + (1 —A)ymi € (0, 1) has m as its unique closest point in M.

LEmMMA 11. Let fEL,, 1 <p<2, and x€ S. Suppose that for each
h+#0,

b (A" (x, h)(0))’ du

M | o %
b (4" (x, (@)
@ (- I)L Wp—dﬂ

+ [ LEQP 47(Cx b Q) sen(E() dit > 0.
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Then

o (A" (x, b))’ du
(3) (p - ) ' |E,1(t)|2_p

i hll !

+ [ LB~ 475 by W) sgn(Er(0) di > 0

Jor each A € (0, 1), where E (t)=A(x)(t) — f,(¢) and where f,(t)=Af(t) +
(1 =) A(x)(@).

Proof. Substituting f, for f in (2) we obtain

b (4’ (x, h)(®)?

= (7D, g%

(4)
+ A1 jﬁ |E(e)? =" A" (x, b, h)(2) sgn(E(t)) du.
But
1—2A277 b (A'(x, h)(1))?

W=+ (=)= |

(-2 [ EOP 47 b RO sen(E)

Clearly, if the second integral in (4) is nonnegative then (2)> 0 implies
(4)> 0. If the second integral is negative then —(1 —A?~") (6 |E(#)"~!
A"(x, h, t)(t) sgn(E(t)) du > 0 and so again (4) > 0. Thus for each h#0,
(4)>0. On the set T={h€R"|[|h|=1 and [°@A'(x,h)?))Y/
|E(t)]* % du= 0o} we have

4 (A" (x, b)(®)?

0

mf ‘(p— 1)‘

+ |' |E ()P~ A"(x, h, h)(¢) sgn(E, () du | = +o0 > 1.

To finish the proof we note that a simple check shows that L = {h € R":
(1) < oo} is a subspace of RY which we may assume is nontrivial.
The map

b (A" (x, b))

S A TN

du

4 IEAOF " A7, B)O) sgn(E(0)) du = B, )
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is continuous for each fixed A € (0, 1), L is closed, and ®(A, h) > 0 so for
each 1€ (0,1) we have infy,,_, ®(4, h)=7J, > 0. Thus, for any 2 with
lhl=1, (3) > min{é,, 1} > 0.

Remark. The condition that | (4'(x, h)(¢))*/\E(t)]*~" du > O for each
h + 0 is satisfied in the case that x is a normal point (since then A'(x. ) is a
one to one map). For the standard nonlinear families (see [1] and [3] for
example) any local best approximation must be normal. Thus for these
families at least we see that the set of functions satisfying the hypotheses of
Theorem 3 will form a dense subset of those having best approximations
from A(S). The main purpose (thus far) of the smoothing technique has been
to establish Theorem 3. Having done this the following three results are
proved exactly as in [1] and so they will only be stated. Theorems 3, 4 and 5
are extensions of the corresponding results in [1].

LEMMA 12. Let M be an approximatively compact subset of a strictly
convex normed linear space E. Suppose there exists a set S < M with the
Jollowing properties:

(a) The subset T=|xEE\M|P_ (x)NS+@} is dense in E\M,
where P, (x) is the subset of best approximations of x from M.
(b) For each x, €T, A€(0,1) and my€P (x)NS there is a

neighborhood. V,(x,) of Axy + (1 — A1) m, such that for all x € V,(x,), P,(s)
is a singleton.

Then the set U of all elements in E having unique best approximations in
M contains an open and dense subset of E.

Progf. See [1, p. 172],

THEOREM 4. Assume A(S) is approximatively compact, that NP is a
dense subset of L, (1 < p) and that

o b A h)()

in du >0
uhll:l-‘a |E(1)]>~? a

whenever A(x) € NP and [+ A(x), then the set U of all elements in L,
having a unique best approximations in A(S) contains an open and dense
subset of L.

DEFINITION 5.

R"[a,b] = }p/q|p= N gxhg= N b, q(x) > 0x€E [a,blf.

=0 1=0

As on important application of Theorem 4 we have
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THEOREM 5. The set U of functions in L,[0,1], 1< p< oo having
unique best approximations in R}, contains an open and dense subset of
L,[0, 1]. (Here we are using Lebesgue Measure.)

II. CoNTINUITY PROPERTIES
OF THE BEST APPROXIMATION OPERATOR

In this section we shall study the continuity properties of the best L,-
approximation operator for 1 < p < 2. We shall employ the perturbation
technique of the previous section in our analysis. As will be seen, this allows
us full use of the implicit function theorem which is the main tool in the
analysis. From the analysis of section /, we have the following “easy” result
on continuity.

THEOREM 6. Suppose fy=L,[u, [a,’b]], 1<p<oo, has A(xy) as its
unique best approx. from A(S). Further assume A(x,) is normal, A(S) is
approximatively compact and that

(4" (xo, A)())° ”
‘a IE(XOst)lz_p

b
+ | 1E(xo, P~ A"(xo, b h)(t) sgn(E(X,, 1)) du > 0.

Then the best projection operator P for A(S) is continuous at f,.

Progf. By Theorem 3, P is well defined on a neighborhood of f, and
since A(S) is approximately compact, and since A(x,) is normal we have (as
in the proof of Theorem 3) that P(f,)— P(f;). From Theorem S and its
proof, the following is immediate.

COROLLARY 2. In the case that u is Lebesgue measure on [a,b] and
A(S) =R, then the best approximation operator is continuous on an open
and dense subset of L,[a, b], 1 < p < c.

In the case p > 2, Wolfe showed in |2] that at a point f, as in Theorem 5
above, the operator P is in fact differentiable and hence Lipschitz continuous.
Surprisingly this is not necessarily the case if 1 < p < 2 even with a linear
approximating family as will be shown presently. Throughout this section we
will assume that A(S) is approximatively compact. Moreover it will be
necessary to use a more precise and, unfortunately, more cumbersome
notation since the function f will now be considered a variable.

As  before let  F,(f, x) = [2 [(A(x) () — f£()* + e*)"* du =

640/34/1-3
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o (BX(f, x)(t) + €' Y'* du for each f€ L, and x € S. For a given f, necessary
conditions for x € S to be a local minimum of F (f,) are given by

(1) (1/p)Fi(fix,h)=0 for all h € R",

(2) (I/p)FJ(fix,h,h)>0 for all h € R,.

Conditions (1) and (2) may be cast in the following equivalent form

()" wlfx)=

(2) <(h, Dy, V(f x)>0 for all hERY where wy,(fix)=
(Welf X)rees WSS, X)) with

oy = L O )
p ox,

—| |EX(f x)(0) + et 2= N

and where Dy, (f, x) is the Jacobian matrix of w,.(f, x) with respect to x
and () is the usual inner product on R". Let Dy, (f,x)() denote the
Frechet derivative of y,(f, x) with respect to f. A simple calculation shows
that for each g€ L,

Dy, (fix)(g)=—

b g(1)(04/0x)(1)

l

o (BX(fix)(t) + %) 0

(p— DE(f,x)1) + €
EXN(f, X)(t) + €*

du, j=1L..N

and Dy, ((f, x)(g) = (Dy, (/. X)(g)s-.. Dw} [(f, x)(8))". We now have the
Jollowing basic resuit.

THEOREM 7. Assume f, € L, and x, € S are such that A(x,) is normal
and is the unique best approximation to f, from A(S) and satisfies

b (A (xo, B)(@))*
Ya 1E(fy» X)) ™7

b
+ ‘ E(fo» xo)(t)lp_l

(1) inf (p—1)|

Irhll 1

du

X sgn(E(fo, xo)()) A" (xo, hy h)(t) dt =1 > 0.

Then there is an e, > 0 such that for each e with 0 < e< e, there exist
neighborhoods U, of f, and V, of x, and a map x,: U, -V, such that

(@) v (/ix(f)=0foral fEU,,
(b) w(fix)=0with f€ U, and x € V, implies that x = x (/)
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(c) x.() is differentiable on U, with x)(f)(g)= Dy :(f, x.(/))
Dy, Afs x()Ng)) for all g€ L,. In fact the map is continuously differen-
tiable.

Proof. We first note that by Lemma9 there exists an e, > 0 and
neighborhoods U of f; and V of x, respectively such that 0 <e<e,,
(f,x)EUXV and |h=1 imply that FI(f,x,h k) >n/2>0. Also, by
shrinking e, further if necessary we may assume that F,(f;.) achieves a
unique minimum at some x, € V. (This is an easy consequence of Lemma §
and Taylor's theorem.) Thus w,(f;,x,)=0 and the condition
F!(fy>Xes B, h) > 1/2 >0 for all ||h||=1 implies that Dy, (f,,x,) exists
since (h, Dy, (f, x)h)=F!(f,x, h,h) so that Dy, (fy,x,) is positive
definite. Also the maps (f,x)— Dy, (f,x) and (f.x)- Dy, (f x) are
easily seen to be continuous on U X V in the product topology on L, X R*.
Thus, we may apply the (generalized) implicit function theorem [9, p. 230]
and the result follows. 1

Now using the differentiability of the map x,() and the fact that for
appropriately small e, the best e-approximation operator P, is given by
P(f)=A(x,(f)) is follows that P, is differentiable with respect to f. But
then the generalized mean value theorem will yield that P, is Lipschitz
continuous at f,. That is, there exists a constant K, depending on fj and a
neighborhood W of f, such that f€ W implies that ||P(f)— P, (f)l, <
K, ||f—/full,- (For the details of this argument see [2].)

It is even possible to show that we may use the same neighborhood W for
all e sufficiently small. The question then is what happens as e —» 0?7 We
know that P,(f)— P(f) and P,(f;) — P(f;), where P is the unperturbed best
approximation operator for A(S). If K, stayed bounded then the Lipschitz
continuity of P could be established. As the next example shows, however,
this program will not succeed in general.

ExaMpLE. Let u be Lebesgue measure on [—1, 1], p=3/2, f(¢) =t and
consider approximating f by constant functions. That is, let § =R and let
A(x)(t) = x for each x ER, t € [—1, 1]. Finally, let g(¢) = 1/\/}¢|. First, it is
clear that the unique best approximation is x = 0 and this is true for each of
the perturbed norms also. Thus, for all e > 0, x,(f;) = 0. Also, for general f
and x we have

Dve.ls x):J.i, [(fT) —x)* + ] " 3/2(/() —x)" +e

(f@t) —x)* + ¢’
Dy, (. x)(g)=_"_l (F() —x) 4 e2]

v
o W2(0) — x)* + ¢
O -x)? +e

dt,

dt.
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In particular, for A arbitrary but sufficiently small that x,(f, + 1g) exists we
have

x,(fo +4g)(g)
o ! W2+ =z ) e
) A = x, ) ) e+ AT = x, ) el
,~' 1 32+l T —xe )t He
L+ = x, )P+ Y e+ AT = x, ) 4 e

where x, ; = x,(f, +1g).

CLamm, lim, , o x}(f, + Ag)(g)= oo (where e >0 though this is not
really necessary). Since
1 (1/2)a* + b*
> S<——7— <1
2 a’ + b?
and 1< (3/2a* + b*)/(a* + b*) < 3/2 if |a| - |b] > O we have

LU )T (AT = x ) )
3 L+ A1 =x, )t + €] e

x.(fo + 48)(g) >

Also since x, ; — x(f,) as e, A — 0 it is sufficient to show that

. R Y dle, A, x)(e) dt
| -
eutoxoo {1, ®(e, A, x)(t) dt >

where @(e, A, x)(t) = [(t + A |¢]~"2 — x)? + €]~ /*. We require the following
lemma.

LEMMA 13. Let y be a positive even integrable function on |—1, 1] that
is continuous except, perhaps, at t =0 and that satisfies v'(t) < 0 on (0, 1].
Let @ be a positive continuous function on [—1, 1]. Define a function g on
[0, 1] by

g(5)=li%ﬂ, where J,=|—1,-8]U [4, 1].

Then
g(8) < g(0)  forall 0<6< 1.
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Progf. Since @ and @y are continuous on Jy, for 6 > 0, g/(d) exists and
a straightforward calculation shows that

[2(9) + 2(=9)][J,, w(t) () — y() |, P(¢) dt ] <0
(ls, 20 dr)’

since w(d) > w(t) for all t € J;, t# +6. 1

g')=

We can now prove the claim above. Let {4,}, {x,} and {e,} be arbitrary with
A..%X,~0 and e, | 0. Let @, denote P(e,,4,,x,) and let y=g=|¢| """
Then by Lemma 12 we have for each n and each [ > > 0 that

Low() @,(0)dt |, w() ®,() dt
Yo d = [, ®ndr

Fix 6. Then

[y @, 0)dr |, (/ithdr _ —2log(d)

[, @0 de [, /it 3dt— 4(1=6"7)

since @,(t)— |¢|~'/? uniformly on J;. Thus

o JLow() 2,() — 2 log(9)
Im 79 mar Y2 aT=67)
But —2 log(d)/4(1 —6'*)— +o0 as 6 >0 so
L v e0d
T e dr i

Finally, we may use the claim to show that the map f— x(f) is not
Lipschitz continuous at f. (Note that in this example, x(f)=A(x(f)) =
P(f).) To do this, suppose there were a constant K and a > 0 such that if
lf—foll<d then |x(f)—x(f)I<K| S-Sl Then in particular,
|x(fy + Ag) —x(fo)l < K| g|| for all A sufficiently small and positive.

But since  |x,(fy +48) — X, (fp)/IA| = Ixi(f, + A*¢)(g) for some
0 < A* <A and since by the claim lim, ,_, x.(f, + 0g)(g) = + o, then for
all e and o sufficiently small and positive, say, |x.(f, + og)(g)| > 2K | gl
Thus for all sufficiently small and positive e and 4, |x,.(f, + 1g) — x.(fu)l/A >
2K || g|I. But then

[xUs + 28) = x(f0)
Klgl> :

i L5 £18) = x7)

e—0

> 2K gl
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for all 4 sufficiently small and positive so we have a contradiction. Thus, P is
not Lipschitz continuous at f,.

Remark. The above example can be generalized to other values of p and
other choices of f, etc. On the other hand, using the inequality, ||xJ(f. )|l <
| Dyt (f x (NI Dy, (f; x.(f))] it is not difficult to show that if

b du cw
) TEGe =y <

where A(x(f,)) is the unique best approximation to f;, then an inequality of
the form || p(f) — p(So)ll, < K || f—foll is valid. Thus if we are dealing with
a discrete set and using counting measure and the error curve does not
vanish at any of the data points. The best approximation operator will be
Lipschitz continuous. For a detailed analysis of the continuity properties of
the best approximation operator see [10].
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